If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.603x^2-5.594x+5.12=0
a = .603; b = -5.594; c = +5.12;
Δ = b2-4ac
Δ = -5.5942-4·.603·5.12
Δ = 18.943396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5.594)-\sqrt{18.943396}}{2*.603}=\frac{5.594-\sqrt{18.943396}}{1.206} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5.594)+\sqrt{18.943396}}{2*.603}=\frac{5.594+\sqrt{18.943396}}{1.206} $
| .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | 4x-10=(3x+4) | | 4x-10=(3x+4) | | -3x+3.5=9.5 | | h/2+15=19 | | h/2+15=19 | | 2(j+4)=20 | | 14x+17=3(x-2)^2-5 | | 2(j+4)=20 | | 4(d+1)=18 | | 4(d+1)=12 | | 4(d+1)=12 | | 4(d+1)=12 | | -6(m-83)=-72 | | -2+3b=-24 | | 2(d-9)=18 | | 785÷n=112 | | -2(r+-13)=16 | | 4(s-12)=20 | | 2x^+3=35 | | 2x^+3=35 | | 2x^+3=35 | | 2x^+3=35 | | 58=47-g | | 2x^+3=35 | | 2x^+3=35 | | 41w^2-31w=0 |